
DARE Lab

Data Democratisation
with Deep Learning:
An Analysis of Text-to-SQL Systems
The Web Conference 2022 Tutorial

George Katsogiannis-Meimarakis (katso@athenarc.gr)
Georgia Koutrika (georgia@athenarc.gr)

HOW MANY
GALAXIES …?

SELECT count (objID)
FROM Galaxy
WHERE cModelMag_g
between 18 and 19

Presenters

George Katsogiannis

● Research Assistant at Athena Research
Center, Greece

○ Text-to-SQL
○ Data Democratisation
○ INODE Project

● MSc Student - Data Science and
Information Technologies

○ Artificial Intelligence and Big Data
specialisation

Georgia Koutrika

● Research Director at Athena Research
Center, Greece

● Research interests:
○ data exploration, including natural language

interfaces, and recommendation systems
○ big data analytics
○ large-scale information extraction, entity

resolution and information integration

2

Why Text-to-SQL Systems?

● The imminent age of information has made data an

indispensable part of all human activities

● Many different data sets are being generated by

users, systems and sensors

● Data repositories can benefit many types of users

looking for insights, patterns, information, etc.

● However, not all users have equal access to data

3

Why Text-to-SQL Systems?

● Data volume and complexity make it difficult

to query data

4

Databases are complex

Why Text-to-SQL Systems?

5

Data Query Interfaces are user-unfriendly

Form-based interfaces have limited query capabilities

Low-level query interfaces are intended for programmers

Why Text-to-SQL Systems?

● Data volume and complexity make it

difficult to query data

● Database query interfaces are notoriously

user-UNFRIENDLY

What is data democratisation?

● Empower everyone to access, use, understand
and derive value from data

● Lift the technical barriers that impede access
to data and eliminate dependency to IT
experts

● Design tools that are aimed for the casual user

● An organization-wide cultural stance

6

SELECT * FROM CITIES
WHERE 50 <
(SELECT AVG(TEMP_F)
FROM STATS WHERE
CITIES.ID = STATS.ID);

Why Text-to-SQL Systems?

Which cities have
year-round average
temperature above

50 degrees?

To satisfy the needs of casual users of databases,
we must break through the barriers that presently prevent
these users from freely employing their native languages

Ted Codd (circa: 1974)

 Expressing queries in natural language can open up data access to everyone
7

Tutorial Outline

1. The Text-to-SQL Problem - 5’

2. Available Benchmarks - 5’

3. A Taxonomy of Text-to-SQL Deep Learning Systems - 35’

4. Key Text-to-SQL Systems - 20’

5. Challenges and Research Opportunities - 10’

1. Schema Linking

2. Language Processing

3. Input Encoding

4. Output Decoding

5. Neural Training

6. Output Refinement

SELECT * FROM CITIES
WHERE 50 <
(SELECT AVG(TEMP_F)
FROM STATS WHERE
CITIES.ID = STATS.ID);

8

The Text-to-SQL Problem

9

The Text-to-SQL Problem

10

SELECT city FROM cities
WHERE 50 < (SELECT AVG(max_temperature)
FROM weather_daily_forecast_log w
WHERE cities.city_id = w.city_id);

Phoenix

Which cities have
year-round average
temperature above

50 degrees?

Challenges: From the NL side

● Complexity of NL
○ Ambiguity

○ References - Schema Linking

○ Inferences

○ Vocabulary Gap

● User Mistakes
○ Spelling mistakes

○ Syntactical/Grammatical mistakes

11

“composer” vs “songwriter”

“President (of the USA) before Obama?”

“model” refers to car.model OR engine.model ?

“Show information about Paris”

“Show most actor played movies “

“Which singer won the most Grammies?”

Grammys

City or person?

??

Challenges: From the SQL side

12

● Complex Syntax
○ SQL is a structured language with a strict

grammar and limited expressivity

● Database Structure
○ The user’s data model may not match the

data schema

“Which countries have a GDP higher than the EU average?”

“Find directors who released a movie this year”

Sounds simple
but needs a

complex nested
query

Simple NLQ that
might need 3,4

or 5 JOINs

A brief timeline of deep learning text-to-SQL research

13

Available Benchmarks

14

Several pain points:

✘ No common datasets
○ System evaluations have used different datasets of varying size

and complexity.

✘ Small or proprietary datasets
○ e.g., TPC-H (100MB) and DBLP (56MB)

✘ No standard, small query sets
○ Different test queries, often not available to reproduce the

experiments.

✘ Incomparable effectiveness evaluations
○ none, user study, manual evaluation, comparison to gold

standard queries

15

Text-to-SQL Benchmarks
Year Dataset Examples Databases
1994 ATIS 275 1
1996 GeoQuery 525 1
2003 Restaurants 39 1
2014 Academic 179 1

2017

IMDb 111 1
Yelp 68 1

Scholar 396 1
WikiSQL 80,654 24,241

2018
Advising 281 1
Spider 10,181 200

2020 MIMICSQL 10,000 1

2021
Spider-Syn 8,034 160
Spider-DK 535 ?

KaggleDBQA 272 8

Two new large benchmarks revolutionise text-to-SQL research, opening the door to machine learning

WikiSQL

● Large crowd-sourced dataset for developing NL interfaces for relational
databases

○ 80K NL/SQL pairs over 25K tables

● NL questions on tables gathered from Wikipedia
○ Not entire databases!
○ The SQL queries that can be performed are quite simple

● Contains many mistakes
○ Research suggests that the upper bound has been reached
○ Human accuracy estimated at 88%

16

🔗 [2] Seq2SQL (2017)

Player No. Nationality Position Years in
Toronto

School
/Club
Team

Leandro
Barbosa

20 Brazil Guard 2010-2012 Tilibra

Muggsy
Bogues

14 USA Guard 1999-2001 Wake
Forest

Jerryd
Bayless

5 USA Guard 2010-2012 Arizona

...

WikiSQL: Example

NLQ:

What nationality is the player Muggsy Bogues?

SQL:

SELECT nationality
WHERE player = muggsy bogues

Table: Toronto Raptors all-time roster

17

WikiSQL: (Bad) Example

NLQ:

Name the most late 1943 with late 194 in slovenia

SQL:

SELECT max(late 1943)
WHERE ! late 1941 = slovenia

Table: Yugoslav Partisans: Composition

! Late
1941

Late
1942

Sept.
1943

Late
1943

Late
1944

1978 Veteran
membership

Croatia 7000 48000 78000 122000 150000

Slovenia 2000 4000 6000 34000 38000

Serbia 23000 8000 13000 22000 204000

...

18

WikiSQL
(badly copied)

Wikipedia
(original table)

A table copied incorrectly from Wikipedia resulted to
the generation of a SQL query that does not make much sense

and a NLQ that is even more incoherent!

Spider

● Large-scale complex and cross-domain semantic parsing and text-to-SQL dataset
○ 10,181 questions
○ 5,693 complex SQL queries
○ 200 databases from 138 different domains

● Annotated by 11 Yale students

● Queries of varying complexity
○ Categories of difficulty: Easy → Medium → Hard → Extra Hard
○ SQL elements such as JOIN, GROUP BY, UNION, INTERSECT, nested queries

● Better quality and complexity than WikiSQL

19

🔗 [3] Spider (2018)

Spider: Example

20

A Taxonomy of Text-to-SQL
Deep Learning Systems

21

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

None

Query
Candidates

Database
Candidates

Candidate
Matching

NLQ SQL

22

DB

Some links might not help create the SQL

Schema Linking

● Consider a human writing a SQL query
based on a NL specification

● Important to find how elements of the NL
appear in the DB

● Three main types of schema links:
○ Table links
○ Column links
○ Value links

NLQ:

How many heads of the departments are older than 56 ?

SQL:

SELECT COUNT(*)
FROM head
WHERE age > 56

23

Finding connections between the NLQ and the DB

Table link: head

Value links: head_ID, Department_ID

Table link: department

Value link: age

Schema Linking: Query Candidates

The three questions of schema linking:

● Which parts of the NLQ to consider?
○ Single Tokens

○ Multi-word candidates (n-grams)

○ Named Entities

○ Generate Additional Candidates

● Which parts of the DB to consider?

● How to decide on a match?

NLQ Examples:

● For each department show the budget in billions

● Show all department directors from New York

24

can be found by
single token

search

n-gram search
is needed to find

these

Can also be
found using

NER

What if it is
stored as “NY”

in the DB?

Must generate
additional
candidates

Look up
similar values

in the DB or
other

Knowledge
Bases

“NY”
“N.Y.”

“N. York”
…

🔗 [24] ValueNet (2020)

Schema Linking: Database Candidates

The three questions of schema linking:

● Which parts of the NLQ to consider?

● Which parts of the DB to consider?
○ Table and Column Names

○ Values via Lookup

○ Values via Knowledge Graphs

● How to decide on a match?

25

Need an efficient
method due to

large size of data

Database
structures such as

inverted indices

What if access to
the data is not

available?

We can search
candidates such as

“New York” in
external KGs

ConceptNet
informs us that
“New York” is a

state

🔗 [19] IRNet (2019)

Schema Linking: Candidate Matching

The three questions of schema linking:

● Which parts of the NLQ to consider?

● Which parts of the DB to consider?

● How to decide on a match?
○ Exact and partial match

○ Fuzzy/Approximate String Matching

○ Learned Embeddings

○ Classifiers

26

Query Candidate DB Candidate Match Method

“department” “department” Exact Match

“budget” “budget in billions” Partial Match

“dept.” department Fuzzy Match

“department director” “head”
Learned Embeddings

Classifiers

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

NLQ SQL

27

DB

Natural Language Processing

● LSTM Neural Networks (1995) 🔗 [5]

● Word Embeddings
○ One-hot Embeddings

○ Word2Vec (2013) 🔗 [6]

○ GloVe (2014) 🔗 [7]

28

● The Transformer (2017) 🔗 [9]

● The rise of language models
■ BERT (2018) 🔗 [10]

■ RoBERTa (2019) 🔗 [11]

■ TaBERT (2020) 🔗 [12]

■ GraPPa (2020) 🔗 [13]

■ BART (2020) 🔗 [28]

■ T5 (2020) 🔗 [29]

How can we give natural language to a neural network?

encoder-decoder

encoder-only

Using Word Embeddings

● Each word of the input is assigned to a
pre-trained word embedding vector

○ Out of vocabulary problem

● The embedding sequence is then processed
by a RNN to create a hidden representation

● Major drawbacks of RNNs:
○ Large processing costs for long sequences
○ Hard to make associations of words that are

not near each other

29

'what', 'nationality', 'is', 'the', 'player', 'muggsy', 'bogues'

e1 e2 e3 e4 e7e6e5

Some rare words
might not have an

embedding!

h1 h2 h3 h4 h7h6h5

Recurrent Neural Network (e.g., LSTM)

Rest of the System

Using Transformer-based PLMs: BERT

● A very large pre-trained neural network
○ BERT Base: 110M parameters

○ BERT Large: 340M parameters

● Can be applied to a wide variety of NL tasks
○ The pre-trained model is fine-tuned with

additional task-specific layers
○ Provided very good results (usually

state-of-the-art) in many NL tasks

30

🔗 [8, 9, 10] WordPiece (2017), Transformer (2017), BERT (2018)

● Based on Transformer neural networks
○ Each element of the sequence is processed

simultaneously, decreasing computation

costs

○ All outputs are based on all other elements

of the sequence, using attention

● Uses WordPiece embeddings to eliminate

the out-of-vocabulary problem

GloVe vs Wordpiece

NLQ: What nationality is the player Muggsy Bogues?

● GloVe:
○ 'what', 'nationality', 'is', 'the', 'player', 'muggsy', 'bogues', '?'

● Wordpiece:
○ 'what', 'nationality', 'is', 'the', 'player', 'mug', '##gs', '##y', 'bog', '##ues', '?'

31

Unknown
rare words

Known
sub-words

Using sub-words, we eliminate the possibility for out-of-vocabulary words,
as long as all characters were also present during the creation of the embeddings

🔗 [7, 8] GloVe (2014), WordPiece (2017)

BERT: Architecture

● Output: A sequence of tokens of equal

length to the input

● Uses many stacks of bidirectional
Transformer encoder layers

● Input: A sequence of token embeddings
○ Uses Wordpiece embeddings

32

Notice the encoder-only
architecture, which

produces a
contextualized

embedding output

🔗 [10] BERT (2018)

BERT: Pre-training & Fine-tuning

Pre-training:

● Training corpus of 3.3B words
○ BooksCorpus (800M words)

○ English Wikipedia (2.5B words)

● The model is simultaneously pre-trained on

two tasks
○ Masked Language Modeling (MLM)

○ Next Sentence Prediction (NSP)

Fine-tuning:

● An application of Transfer Learning
○ We have a model (BERT) trained on a very

large corpus and a more general task
○ We add some extra layers and perform

additional training on our task

● We must make two decisions
○ How to give our task’s input to BERT
○ How to use BERT’s output to make

predictions for our task

33

Task-specific PLMs: GraPPa

● Initialized by RoBERTa-Large

● Synthetic pre-training data is created from
tabular datasets like:

○ Spider
○ WikiSQL
○ WikiTableQuestions

● Experiments show better performance in
text-to-SQL when using GraPPa instead of
RoBERTa

Pre-training tasks:

● Masked Language Modelling (MLM)

○ Input: NLQ/Table Description + Columns
○ The network must predict the masked words both in the

NLQ and columns

● SQL Semantic Prediction (SSP)

○ Input: NLQ + Columns
○ The network must predict for each column, if it appears

in the SQL and its role (e.g. SELECT, GROUP BY)

34

🔗 [13] GraPPa (2020)

Encoder-Decoder PLMs

● Another category of very powerful

transformer-based pre-trained models

● Operate on a sequence-to-sequence

(text-to-text) framework

● Limited design choices, but very good

results (e.g., T5-3B + PICARD)

35

Encoder Autoregressive
Decoder

Input Sequence

Output Sequence

NLQ + DB

SQL

🔗 [28, 29] BART (2020), T5 (2020)

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

NLQ SQL

Input
Encoding

NLQ & Cols
Separately

Input
Serialisation

NLQ with each
column separately

Schema
Graph

36

DB

Input Encoding: Separate Encoding

● Used by the first text-to-SQL systems
(Seq2SQL, SQLNet) for WikiSQL

● The main reason is the different format of
the NLQ and table columns
○ NLQ: Sequence of words
○ Column names: Sequence of sequences of

words

● The two different inputs must be combined
(attention, concatenation, sum, etc.)

37

Input Encoding: Serialisation

● Widely used by newer systems

incorporating language models

● No need to combine different inputs

● The database schema is flattened into a

sequence of words

38

‘How’, ‘many’, ‘heads’, ‘of’, ‘the’, ‘departments’, ‘are’, ‘older’, ‘than’, ‘56, ‘?’, [SEP],

‘department’, [SEP], ‘name’, [SEP], ‘creation’, [SEP], ‘ranking’, [SEP],

‘budget_in_billions’, [SEP], ‘num_employes’, [SEP], ’management’, [SEP],

‘department_id’, [SEP], ‘head_id’, [SEP], ‘temporary_acting’, [SEP], ‘head’, [SEP],

‘head_id’, [SEP], ‘name’, [SEP], ‘born_state’, [SEP], ‘age’, [SEP]

How many heads of the
departments are older

than 56 ?

Input Encoding: NLQ with Each Column Separately

● A unique approach proposed by HydraNet
(more later on)

● The NLQ is processed with each column
separately

● Predictions are made for each column
separately

● Works very well on WikiSQL

● No similar approach for Spider

39

Input Encoding: Graph Encoding

● Using graphs allows the preservation of all

the schema relations
○ Which columns belong to which table

○ Which columns are keys

○ Which tables are connected by foreign keys

● The words of the NLQ can be added to the

graph based on schema links and similarity

● Much more complex neural design

40

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

Output
Decoding

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

Sequence

Sketch

Grammar

NLQ SQL

Input
Encoding

NLQ & Cols
Separately

Input
Serialisation

NLQ with each
column separately

Schema
Graph

41

DB

Output Decoding: Sequence-based

42

🔗 [14] Language to Logical Form with Neural

Attention (2016)

🔗 [2] Seq2SQL (2017)

🔗 [22] BRIDGE (2020)

🔗 [30] T5-3B + PICARD (2021)

● We consider two sequences:
○ NLQ (input sequence)

○ SQL query (output sequence)

● Text-to-SQL becomes a

sequence-to-sequence transformation

problem
○ The network learns to generate a sequence

of tokens, which is the SQL query

● Simplifies the text-to-SQL problem

● More possibilities for errors
○ Nothing prevents syntactical errors when

predicting

○ Usually avoided until recently

○ Recent works show promising techniques

that help avoid such errors

Output Decoding: Sketch-based

43

● We have a sketch of the query with missing

parts that need to be filled

● Sketch used by systems designed for

WikiSQL

● Further simplifies the task of producing a

SQL query into smaller sub-tasks

● Hard to extend for complex queries

SELECT <AGG> <COLUMN>
(

WHERE <COLUMN> <OP> <VALUE>
(AND <COLUMN> <OP> <VALUE>) ∗

) ?

🔗 [15] SQLNet (2017)

🔗 [16] SQLova (2019)

🔗 [17] HydraNet (2020)

Output Decoding: Grammar-based

44

● Generate a sequence of rules instead of

simple tokens

● Apply the rules sequentially to get a SQL

query

● Easier to avoid errors

● Can cover more complex SQL queries

● Needs more complex design

🔗 [18] IncSQL (2018)

🔗 [19] IRNet (2019)

🔗 [20] RAT-SQL (2020)

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

Output
Decoding

Neural
Training

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

Sequence

Sketch

Grammar

Fresh
Start

Transfer
Learning

Pre-train specific
parts

NLQ SQL

Input
Encoding

NLQ & Cols
Separately

Input
Serialisation

NLQ with each
column separately

Schema
Graph

Additional
Objectives

45

DB

Neural Training

1. Fresh Start: Train the network from scratch
○ The most common approach for neural

networks

2. Transfer Learning: First pre-train on a
generic task, then fine-tune for text-to-SQL

○ The Computer Vision and NLP domains
have proven its power

○ Has seen widespread use with the
introduction of Transformer-based PLMs

3. Additional Objectives: Train for additional

sub-tasks simultaneously with text-to-SQL
○ Training for additional tasks, related to the

main problem, can boost performance

4. Pre-train Specific Parts: Maybe some

components of the network can benefit by

independent pre-training
○ GP proposes to pre-train the decoder, in

order to better learn the output’s grammar

46

Erosion: Delete parts of
the DB schema and train
the model to produce the

correct SQL with the
eroded schema

Shuffling: Randomly
change the order of

attributes and conditions in
both the NLQ and SQL
and train the network to
re-order them correctly

🔗 [31, 32] SeaD (2021), GP (2021)

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

Output
Decoding

Neural
Training

Output
Refinement

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

Sequence

Sketch

Grammar

Fresh
Start

Transfer
Learning

Pre-train specific
parts

None

Execution-based
Decoding

NLQ SQL

Input
Encoding

NLQ & Cols
Separately

Input
Serialisation

NLQ with each
column separately

Schema
Graph

Additional
Objectives

Constrained
Decoding

Output
Re-ranking

47

DB

Output Refinement: Execution-Guided Decoding

● Sketch-based approaches greatly reduce

the possibility of errors

● There are still a few possibilities
○ Aggregation function mismatch (e.g. AVG

on string type)

○ Condition type mismatch (e.g. comparing a

float type column with a string type value)

● Execution guided decoding helps the

system avoid making such choices at

prediction time

● By executing partially complete predicted

SQL queries, the system can reject choices

that create execution errors or yield empty
results

48

🔗 [4] Execution-Guided Decoding (2018)

Output Refinement: Constrained Decoding

● Models with sequence-based decoders are

becoming all the more powerful (e.g., T5)

● However, their main drawback is their

proneness to syntactic and grammatical
errors

● Constrained decoding works to prevent

sequence-based models from producing

erroneous queries

● PICARD proposes a novel method for

incrementally parsing and constraining

auto-regressive decoders
○ For each token prediction, PICARD

examines the top-k most probable tokens

○ If any of the k tokens would result in a

grammatical error, it is discarded

○ If any of the k tokens contain an attribute
that is not present in the DB, it is discarded

49

🔗 [31] PICARD (2021)

Output Refinement: Discriminative Re-ranking

● The nature of neural networks allows us to

extract multiple predictions for the same

NLQ

● Maybe the highest-ranked by the network

is not always the correct

● Global-GNN proposes an additional

network to re-rank the k highest-ranked

predictions

50

🔗 [33] Global-GNN (2019)

Text-to-SQL System

SQL1 SQL2 SQL3 SQL4

Discriminative Re-ranker

SQL1 SQL2SQL3 SQL4

Taxonomy Overview of a Deep Learning Text-to-SQL system

Schema
Linking

Language
Processing

Output
Decoding

Neural
Training

Output
Refinement

None

Query
Candidates

Database
Candidates

Candidate
Matching

Word
Embeddings

Pre-trained
Language Models

Sequence

Sketch

Grammar

Fresh
Start

Transfer
Learning

Pre-train specific
parts

None

Execution-based
Decoding

NLQ SQL

Input
Encoding

NLQ & Cols
Separately

Input
Serialisation

NLQ with each
column separately

Schema
Graph

Additional
Objectives

Constrained
Decoding

Output
Re-ranking

51

DB

Key Text-to-SQL Systems

52

Text-to-SQL
Systems

Taking a closer look on key
text-to-SQL systems

1. Seq2SQL

2. SQLNet

3. HydraNet

4. SQLova

5. IRNet

6. RAT-SQL

7. T5-3B + PICARD

53

Seq2SQL

● GloVe Embeddings

● Common LSTM encoders for all networks

● Separate networks predict different parts

of the SQL query

● Trained using reinforcement learning

54

SELECT MAX (budget) WHERE year = 2021

🔗 [2] Seq2SQL (2017)

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Word
Embeddings Separately Sequence-based Fresh Start None

SQLNet

● Completely sketch-based

● Each component has its own pair of LSTM
encoders

● Introduces Column Attention
○ A neural module in each network that tries

to emphasize words in the NLQ that might
be connected to the table’s headers

● Without Reinforcement Learning

55

SELECT <AGG> <COLUMN>

(WHERE <COLUMN> <OP> <VALUE>

(AND <COLUMN> <OP> <VALUE>) ∗) ?

🔗 [15] SQLNet (2017)

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Word
Embeddings Separately Sketch-based Fresh Start None

HydraNet

● Works with the same sketch as SQLNet

● Almost completely relies on BERT
○ Simple linear networks make predictions for

the sketch’s slots using BERT’s output

● Each column is processed separately

56

Condition value

WikiSQL

● Aggregation function
● SELECT column
● Number of conditions
● Condition column
● Condition operator

🔗 [17] HydraNet (2020)

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Encoder-only
PLM

Each column
separately Sketch-based Transfer Learning None

HydraNet

● For each column of the table, construct the input
for BERT containing the column_type, table_name
and column_name

● Classification tasks:
○ Predict if column i is in the SELECT clause
○ Predict an aggregation function for column i
○ Predict if column i is in the WHERE clause
○ Predict a WHERE clause operator for column i

● Predict the condition value for column i:
○ For each NLQ token j predict if: (a) it is the start of

the value, (b) if it is the end of the value

57

P(c
i
 ∈ S

Q
|Q) = sigmoid(W

sc
 · C

CLS
)

P(y
j
 = start|c

i
, Q) = softmax(W

start
· Q’

j
)

🔗 [17] HydraNet (2020)

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Encoder-only
PLM

Each column
separately Sketch-based Transfer Learning None

SQLova

● Same sketch as SQLNet

● Concatenates table columns to NLQ for

simultaneous encoding

● Uses a much more complex network after

taking the BERT outputs
○ Almost identical to SQLNet

● Achieves lower accuracy on WikiSQL than

HydraNet

58

🔗 [16] SQLova (2019)

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Encoder-only
PLM Serialise Sketch-based Transfer Learning None

IRNet - Schema Linking

● Considers all n-grams of length 1-6 in the NLQ

● If a n-gram matches a column or a table it is marked
as a complete match or partial match accordingly

● If a n-gram is inside quotes it is marked as a value
link

○ Assumes that DB values are not accessible
○ Value links are searched on ConceptNet to find the

linked column/table

● The NLQ is split into spans based on the types of
discovered links

59

Show all department heads born in “New York”

Show all department heads born in New York
None None Table Table Column None Value

New
York

state
is-a

ConceptNet

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement
n-gram match,

Knowledge
graphs

Encoder-only
PLM

Separately (GloVe)
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)

IRNet - Encoding

60

● Input can be encoded with GloVe or BERT
○ Accuracy with BERT is 8% higher

● Schema link tokens are appended to the
matched NLQ spans

● Spans with multiple tokens are reduced to a
single token using LSTM networks

● Column tokens are added to a type
embedding (int, string, etc.)

[CLS] Show all departmentTable ... NewValue York [SEP] department_id [SEP] Name [SEP] ...

BERT
Hx1 Hx2 ... [SEP] department_id [SEP] Name [SEP] ...

LSTM LSTM

Hx3 Hxn

type1 type2

+ +

EC1 EC2

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement
n-gram match,

Knowledge
graphs

Encoder-only
PLM

Separately (GloVe)
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)

IRNet - Decoding

● Generates SemQL instead of SQL

● Generate a SemQL query as an Abstract
Syntax Tree (AST)

○ Uses a LSTM decoder that predicts rules for
building the SemQL AST [28]

● When generating a column or table name, it
can make a prediction from:

○ All schema elements
○ Elements already used in generated query

(memory)

61

NLQ Representation

Decoder

Z

R

Select Filter

None Column Table ...

? head

Schema
Representation

Memory

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement
n-gram match,

Knowledge
graphs

Encoder-only
PLM

Separately (GloVe)
or Serialise (BERT)

Grammar-based Transfer Learning None

🔗 [19] IRNet (2019)

RAT-SQL - Encoder

● Question-contextualized schema graph

● Schema nodes and NLQ word nodes

● Edges are relations between them from:
○ Schema relations
○ Name-based Linking (exact or partial

n-gram match)
○ Value-based Linking (through DB indices or

textual search)

● Encoding with GloVe & LSTM or BERT

62

management

department

head

head_id

name

age
primary_key

head_id
foreign_key

Show all department heads

QUESTION-TABLE
PARTIAL MATCH

QUESTION-TABLE
EXACT MATCH

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

n-gram match,
indices

Encoder-only
PLM Graph encoding Grammar-based Transfer Learning None

🔗 [20] RAT-SQL (2020)

RAT-SQL - Decoder

● Specially modified Transformers, for

relation-aware self-attention, biases the

network towards known relations (edges)

● SQL generation as an AST, by predicting a

sequence of decoder actions
○ Uses a similar LSTM decoder to IRNet

63

management department head head_id name age

Show all department heads

Relation-aware TransformersGraph
Edges

LSTM Decoder

SELECT

name FROM

...

BERT

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

n-gram match,
indices

Encoder-only
PLM Graph encoding Grammar-based Transfer Learning None

🔗 [20] RAT-SQL (2020)

PICARD

● PICARD is a constraining technique for

autoregressive decoders of language models
○ Checks for spelling, syntax and grammar errors

○ Checks for availability of used attributes

○ Checks the use of correct aliases

● Tackles the drawbacks of sequence-based
decoders

● Manages to reach the top of the Spider

leaderboard in combination with T5-3B

64

Schema Linking
NL

Representation Input Encoding
Output

Decoding Neural Training
Output

Refinement

None Enc-Dec PLM Serialisation Sequence-based Transfer Learning Constrained
Decoding

🔗 [30] PICARD (2021)

SELECT

*

, age

SELECTFROM

head

stores

SELECT

age

Incorrect syntax Not a table name Tables in FROM clause
don’t contain this column

*

Prediction steps

65

System NL
Representation Schema Linking Input Encoding Decoder Output Accuracy

Seq2SQL
GloVe

None

Separate
Sequence 59.4 %

SQLNet

Sketch-based

68.0 %

HydraNet

Encoder-only PLM

For each column 92.2 %
(using EG decoding)

SQLova
Serialise

89.6 %
(using EG decoding)

IRNet n-grams, KG
Grammar-based

60.1* %

RAT-SQL n-grams, indices Graph encoding 70.5* %

T5-3B+PICARD Encoder-Decoder
PLM None Serialise Sequence 71.9%

Execution
Accuracy

on
WikiSQL
Test Set

Exact Set
Match

without
Values on

Spider
Test Set

*Scores achieved using different language models and improvements

Text-to-SQL System Overview

Challenges and
Research Opportunities

66

Challenges: Benchmarks and Existing Systems

67

Focus on effectiveness based on the queries translated

They do not:

✗ do not measure query expressivity (from a NL or SQL standpoint)

✗ do not care about execution time or model sizes

✗ do not allow for more than one correct answers

● 216 keyword-based and 241 natural language queries

● Divided into 17 categories

● Spanning 3 datasets of varying sizes and complexities: IMDB, MAS, YELP

THOR Query Benchmark

68

SQL Challenges

NL Challenges

🔗 [1] THOR (2021)

Few systems tackle most SQL challenges (to an extent), but
NL challenges are even harder

Challenges: Query Expressivity

69

Can we build systems that can answer any type of NL question?

No universal solutions exist
Different data sets present different intricate characteristics

 ✗ Domain-specific or application-specific solutions:

ontologies, knowledge bases

Challenges: Universal solutions

70

Can we build systems that work well for different datasets?

•Research & Innovation Policy Making: CORDIS
•Astrophysics: SDSS
•Cancer Biomarker Research

Challenges: Real-life datasets

71

1. Unknown (and often cryptic) schemas

 e.g., u, g, specobj, photoobj

2. Scaling to very large schemas

 Photo_obj table alone has over 500 attributes

3. Complex systems

4. No training data

Challenges: Real-life datasets

72

Challenges: Deep Learning all the way?

73

Can we combine the best of both worlds?

- techniques?

- systems?

Database-based approaches generate semantically correct SQL queries, NMT

approaches promise to be able to generalize to different types of queries and data

 ✗ Not there yet → low query expressivity

Deep learning approaches generate one translation for a user query

 ✗ what if there are more than one way to answer a query

Challenges: One answer or more?

74

We need to balance diversity and disambiguation

Show me Italian
restaurants

1. "business categorized as restaurant and as Italian”
2. "business categorized as restaurant that serves Italian”

● Even if we solve the text-to-SQL problem, is our job done?

● How can the user validate the predicted SQL so that it matches the intention of their query?
○ Natural Language explanations of SQL (SQL-to-text)

● What if the user does not understand the DB well enough to ask a NLQ?
○ Query recommendation systems
○ Intelligent exploration systems

● What if the user does not understand the returned data?
○ Data visualisation
○ Query result explanations

Challenges: The next steps for Data Democratisation

75

Text-to-SQL systems are just one of the pieces in the data democratisation puzzle

References (1/5)

[1] O. Gkini, T. Belmpas, G. Koutrika, Y. Ioannidis. An In-Depth Benchmarking of Text-to-SQL Systems. ACM SIGMOD 2021.

[2] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. CoRR,
September 2017

[3] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2019.
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. EMNLP 2018.

[4] C. Wang, K. Tatwawadi, M. Brockschmidt, P. Huang, Y. Mao, O. Polozov and R. Singh Robust. 2018. Text-to-SQL Generation with Execution-Guided Decoding.

[5] S. Hochreiter and J. Schmidhuber . 1997. Long Short-term Memory. Neural computation. 9. 1735-80.

[6] T. Mikolov, K. Chen, G. Corrado and J. Dean. 2013. Efficient Estimation of Word Representations in Vector Space.

[7] J. Pennington, R. Socher and C. D. Manning. 2014. GloVe: Global Vectors for Word Representation. EMNLP 2014.

76

References (2/5)

77

[8] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,

K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes and J. Dean. 2016. Google's Neural Machine Translation System: Bridging the

Gap between Human and Machine Translation.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. 2017. Attention Is All You Need. NIPS 2017.

[10] D. Jacob, C. Ming-Wei, L. Kenton and T. Kristina. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 4171–4186.

[11] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V. Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.

[12] P. Yin, G. Neubig, W. Yih and S. Riedel. 2020. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics.

[13] T. Yu, C. Wu, X. V. Lin, B. Wang, Y. C. Tan, X. Yang, D. Radev, R. Socher and C. Xiong. 2020. GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing.

References (3/5)

78

[14] L .Dong and M. Lapata. 2016. Language to Logical Form with Neural Attention. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers).

[15] X. Xu, C. Liu and D. Song. 2017. SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning.

[16] W. Hwang, J. Yim, S. Park and M. Seo. 2019. A Comprehensive Exploration on WikiSQL with Table-Aware Word Contextualization.

[17] Q. Lyu, K. Chakrabarti, S. Hathi, S. Kundu, J. Zhang and Z. Chen. 2020. Hybrid Ranking Network for Text-to-SQL.

[18] T. Shi, K. Tatwawadi, K. Chakrabarti, Y. Mao, O. Polozov, and W. Chen. 2018. IncSQL: Training Incremental Text-to-SQL Parsers with Non-Deterministic Oracles.

[19] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation. Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics.

[20] B. Wang, R. Shin, X. Liu, O. Polozov, M. Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers. Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

References (4/5)

[21] P. Yin and G. Neubig. 2017. A Syntactic Neural Model for General-Purpose Code Generation. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).

[22] X. V. Lin, R. Socher and C. Xiong. Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. Findings of the Association for Computational
Linguistics: EMNLP 2020.

[23] B. Hui, X. Shi, R.Geng, B. Li, Y. Li, J. Sun and Xiaodan Zhu. Improving Text-to-SQL with Schema Dependency Learning. 2021

[24] U. Brunner and K. Stockinger. ValueNet: A Neural Text-to-SQL Architecture Incorporating Values. 2020

[25] Mohammed Saeed and Paolo Papotti. Fact-checking Statistical Claims with Relational Datasets. IEEE Data Engineering, 2021

[26] S.Jo, I. Trummer, W. Yu, X. Wang, C. Yu, D. Liu, and N. Mehta. Verifying text summaries of relational data sets. SIGMOD ’19

[27] G. Karagiannis, M. Saeed, P. Papotti, and I. Trummer. Scrutinizer: Fact checking statistical claims. Proc. VLDB Endow., 2020

79

References (5/5)

[28] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettlemoyer. 2020. BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

[29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu. 2020. Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research

[30] T. Scholak, N. Schucher, D. Bahdanau. 2021. PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing

[31] K. Xuan, Y. Wang, Y. Wang, Z. Wen, Y. Dong. 2021. SeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising. Arxiv pre-print

[32] L. Zhao, H. Cao, Y. Zhao. 2021. GP: Context-free Grammar Pre-training for Text-to-SQL Parsers. CoRR

[33] B. Bogin, M. Gardner, J. Berant. 2019. Global Reasoning over Database Structures for Text-to-SQL Parsing. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing

80

Thank you! Questions?

81

